A proton moves from south to north with a speed of $2 × 10^7 m s^{-1}$. When a magnetic field is applied from west to east, the proton gets an acceleration of $10^{12} m s^{-2}$. The mass of the proton is $1.6 × 10^{-27} kg$. The value of the magnetic field is |
$5 × 10^{-4} T$ $5 × 10^{-5} T$ $1 × 10^{-3} T$ $1 × 10^{-4} T$ |
$5 × 10^{-4} T$ |
The correct answer is Option (1) → $5 × 10^{-4} T$ Given: Velocity of proton: $v = 2 \times 10^{7} \, m/s$ (south → north) Magnetic field: west → east Acceleration: $a = 10^{12} \, m/s^2$ Mass of proton: $m = 1.6 \times 10^{-27} \, kg$ Charge of proton: $q = 1.6 \times 10^{-19} \, C$ Magnetic force: $F = q v B$ Also, $F = ma$ So, $q v B = m a$ $B = \frac{ma}{qv}$ Substitute values: $B = \frac{(1.6 \times 10^{-27})(10^{12})}{(1.6 \times 10^{-19})(2 \times 10^{7})}$ $B = \frac{1.6 \times 10^{-15}}{3.2 \times 10^{-12}}$ $B = 0.5 \times 10^{-3}$ $B = 5 \times 10^{-4} \, T$ Answer: The magnetic field is $5 \times 10^{-4} \, T$. |