If the line $\vec{r}=(\hat{i}+\hat{j}+\hat{k})+\lambda(2 \hat{i}+\hat{j}+2 \hat{k})$ is parallel to the plane $\vec{r} . (3 \hat{i}-2 \hat{j}+a \hat{k})=11$, then a is equal to : |
-1 -3 2 -2 |
-2 |
$\vec{r}=(\hat{i}+\hat{j}+\hat{k})+\lambda(2 \hat{i}+\hat{j}+2 \hat{k})$ this vector is parallel to direction of line Plane: $\vec{r}-(3 \hat{i}-2 \hat{j}+a k)=11$ this vector is perpendicular to place let $\vec{p} =2 \hat{i}+\hat{j}+2 \hat{k}$ $\vec{q} =3 \hat{i}-2 \hat{j}+a \hat{k}$ as $\vec{p}$ is parallel to plane ⇒ $\vec{p}$ is perpendicular to $\vec{q}$ ⇒ $\vec{p} . \vec{q}=0$ (since angle $\vec{p}$ and $\vec{q}$ is 90° and $\vec{p}.\vec{p} = |\vec{p}||\vec{q}|cos90°=0$) $\Rightarrow (2 \hat{i}+\hat{j}+2 \hat{k})(3 \hat{i}-2 \hat{j}+a \hat{k})=0$ $6-2+2 a=0$ $4+2 a=0$ $2 a=-4$ $a=-2$ |