Using integration the area enclosed by the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is equal to : |
$\pi ab $ $\pi a^2b$ $\pi^2 ab $ $\pi ab^2$ |
$\pi ab $ |
The correct answer is Option (1) → $πab$ By symetry $I=II=III=IV$ Required area = $4×I$ from eq. $y=\frac{b}{a}\sqrt{a^2-x^2}$ so area = $4\frac{b}{a}\int\limits_0^a\sqrt{a^2-x^2}dx$ $=4\frac{b}{a}\left[\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\frac{x}{a}\right]_0^a$ $=4\frac{b}{a}×\frac{πa^2}{2×2}=πab$ |