A firm makes pants and shirt. A shirt takes 2 hour on machine and 3 hour of man labour while a pant takes 3 hour on machine and 2 hour of man labour. In a week there are 70 hour of machine and 75 hour of man labour available. If the firm determines to make x shirts and y pants per week, then for this the linear constraints are |
$x \geq 0, y \geq 0,2 x+3 y \geq 70,3 x+2 y \geq 75$ $x \geq 0, y \geq 0,2 x+3 y \leq 70,3 x+2 y \geq 75$ $x \geq 0, y \geq 0,2 x+3 y \geq 70,3 x+2 y+\leq 75$ $x \geq 0, y \geq 0,2 x+3 y \leq 70,3 x+2 y \leq 75$ |
$x \geq 0, y \geq 0,2 x+3 y \leq 70,3 x+2 y \leq 75$ |
|