For $x≠1$, if $\int\frac{xe^xdx}{(1+x)^2}=\frac{ae^x}{(1+x)^b}+c$, where $a, b$ are fixed numbers and $c$ is the integration constant, then $a + b$ is equal to |
0 1 2 3 |
2 |
The correct answer is Option (3) → 2 Given: $\displaystyle \int \frac{x e^x}{(1 + x)^2} dx = \frac{a e^x}{(1 + x)^b} + c$ Use substitution: let $u = 1 + x \Rightarrow du = dx$, and $x = u - 1$ Then the integrand becomes: $\displaystyle \int \frac{(u - 1)e^{u - 1}}{u^2} du$ $= e^{-1} \int \frac{(u - 1)e^u}{u^2} du$ Use integration by parts: Let $I = \int \frac{(u - 1)e^u}{u^2} du$ Split numerator: $I = \int \left( \frac{e^u}{u} - \frac{e^u}{u^2} \right) du$ So the integral becomes: $\int \frac{x e^x}{(1 + x)^2} dx = e^{-1} \left( \int \frac{e^u}{u} du - \int \frac{e^u}{u^2} du \right)$ This expression is complicated, but the original integral is clearly designed to match the derivative of the RHS: Let us directly differentiate RHS: $f(x) = \frac{a e^x}{(1 + x)^b}$ $f'(x) = a \cdot \frac{e^x (1 + x)^b - b(1 + x)^{b - 1} \cdot e^x}{(1 + x)^{2b}}$ $= a e^x \cdot \frac{(1 + x)^b - b(1 + x)^{b - 1}}{(1 + x)^{2b}}$ $= a e^x \cdot \frac{(1 + x) - b}{(1 + x)^{b + 1}}$ We want this to match: $\frac{x e^x}{(1 + x)^2}$ So set: $\displaystyle a e^x \cdot \frac{(1 + x) - b}{(1 + x)^{b + 1}} = \frac{x e^x}{(1 + x)^2}$ Cancel $e^x$: $a \cdot \frac{(1 + x) - b}{(1 + x)^{b + 1}} = \frac{x}{(1 + x)^2}$ Now equate numerators and denominators: Denominator: $b + 1 = 2 \Rightarrow b = 1$ Numerator: $a((1 + x) - 1) = a x = x \Rightarrow a = 1$ So $a = 1$, $b = 1$ ⇒ $a + b = {2}$ |