According to the graph drawn here, identify the constraints of the associated linear programming problem: |
x, y ≥ 0, x + 2y ≥ 10, 3x + 4y ≥ 24 x, y ≥ 0, x + 2y ≤ 10, 3x + 4y ≤ 24 x, y ≥ 0, x + 2y ≤ 10, 3x + 4y ≥ 24 x, y ≥ 0, x + 2y ≥ 10, 3x + 4y ≤ 24 |
x, y ≥ 0, x + 2y ≥ 10, 3x + 4y ≤ 24 |
The correct answer is Option (4) → x, y ≥ 0, x + 2y ≥ 10, 3x + 4y ≤ 24 As the feasible region is in 1st Quadrant, $x,y≥ 0$ Now, Equation of line ≡ $y+mx+c$ [m = slope] Line 1: $y=\frac{0-5}{10-0}x+C$ $2y=-x+C'$ $⇒2y+x=C'$ and, (4, 3) satisfies this $⇒2×3+4=C'$ $⇒10=C'$ $∴2y+x=10$ Line 2: $y=\frac{-6}{8}x+C$ $4y=-3x+C'$ $⇒4y+3x=C'$ (4, 3) satisfies this, $4×3+3×4=C'$ $24=C'$ $∴4y+3x=24$ $∴4y+3x≤24, x + 2y ≥ 10,x, y ≥ 0$ |