Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Linear Programming

Question:

According to the graph drawn here, identify the constraints of the associated linear programming problem:

Options:

x, y ≥ 0,  x + 2y ≥ 10,  3x + 4y ≥ 24

x, y ≥ 0,  x + 2y ≤ 10,  3x + 4y ≤ 24

x, y ≥ 0,  x + 2y ≤ 10,  3x + 4y ≥ 24

x, y ≥ 0,  x + 2y ≥ 10,  3x + 4y ≤ 24

Correct Answer:

x, y ≥ 0,  x + 2y ≥ 10,  3x + 4y ≤ 24

Explanation:

The correct answer is Option (4) → x, y ≥ 0,  x + 2y ≥ 10,  3x + 4y ≤ 24

As the feasible region is in 1st Quadrant,

$x,y≥ 0$

Now,

Equation of line ≡ $y+mx+c$   [m = slope]

Line 1: $y=\frac{0-5}{10-0}x+C$

$2y=-x+C'$

$⇒2y+x=C'$

and, (4, 3) satisfies this

$⇒2×3+4=C'$

$⇒10=C'$

$∴2y+x=10$

Line 2: $y=\frac{-6}{8}x+C$

$4y=-3x+C'$

$⇒4y+3x=C'$

(4, 3) satisfies this,

$4×3+3×4=C'$

$24=C'$

$∴4y+3x=24$

$∴4y+3x≤24,  x + 2y ≥ 10,x, y ≥ 0$