The volume of spherical balloon is increasing at the rate of $4\, cm^3/sec$. The rate of increase of its surface area, when the radius is 3 cm will be :- |
$2.5\, cm^2/sec$ $2.66\, cm^2/sec$ $2.61\, cm^2/sec$ $2.59\, cm^2/sec$ |
$2.66\, cm^2/sec$ |
The correct answer is Option (2) → $2.66\, cm^2/sec$ Volume of sphere: $V = \frac{4}{3}\pi r^3$ Surface area of sphere: $S = 4\pi r^2$ Given: $\frac{dV}{dt} = 4 \, cm^3/sec$ Differentiate $V = \frac{4}{3}\pi r^3$ w.r.t. $t$: $\frac{dV}{dt} = 4\pi r^2 \frac{dr}{dt}$ Substitute values: $4 = 4\pi (3^2)\frac{dr}{dt}$ $4 = 36\pi \frac{dr}{dt}$ $\frac{dr}{dt} = \frac{1}{9\pi}$ Now, differentiate $S = 4\pi r^2$: $\frac{dS}{dt} = 8\pi r \frac{dr}{dt}$ At $r=3$: $\frac{dS}{dt} = 8\pi (3)\cdot \frac{1}{9\pi}$ $\frac{dS}{dt} = \frac{24}{9} = \frac{8}{3} \, cm^2/sec$ Final Answer: $\frac{8}{3}\, cm^2/sec$ |