$\int \frac{x}{x^2+x-12} d x$ is equal to |
$\frac{3}{7} \log |x-3|+\frac{4}{7} \log |x+4|+C$ $-\frac{3}{7} \log |x-3|+\frac{4}{7} \log |x+4|+C$ $\frac{4}{7} \log |x-3|+\frac{3}{7} \log |x+4|+C$ $\frac{4}{7} \log |x-3|-\frac{3}{7} \log |x+4|+C$ |
$\frac{3}{7} \log |x-3|+\frac{4}{7} \log |x+4|+C$ |
The correct answer is Option (1) → $\frac{3}{7} \log |x-3|+\frac{4}{7} \log |x+4|+C$ $\int \frac{x}{x^2+x-12} d x$ $=\int\frac{x}{(x+4)(x-3)}dx$ $⇒\frac{x}{(x+4)(x-3)}=\frac{A}{x+4}+\frac{B}{x-3}$ $⇒x=A(x-3)+B(x+4)$ $⇒x=(A+B)x+(-3A+4B)$ $∴A=\frac{4}{7},B=\frac{3}{7}$ |