The side of an equilateral triangle increases at the rate of 3 cm/sec, then the rate at which the area of the triangle increases when the side is 4 cm, is : |
$6\, cm^2/sec$ $6\, \sqrt{3}cm^2/sec$ $\sqrt{3}cm^2/sec$ $6/\sqrt{3}cm^2/sec$ |
$6\, \sqrt{3}cm^2/sec$ |
The correct answer is Option (2) → $6\, \sqrt{3}cm^2/sec$ s → side of equal lateral triangle $\frac{ds}{dt}=3cm/sec$ Area A = $\frac{\sqrt{3}}{4}s^2$ $\frac{dA}{dt}=\frac{\sqrt{3}}{2}s\frac{ds}{dt}=\frac{\sqrt{3}}{2}×4×3$ $=6\sqrt{3}cm^2/\sec$ |