A point $P(3a,-2b)$ lies in region $4x+7y≤(-3)$ which of the following options is true ? |
$14b-12a≥3$ $14a-12b≥3$ $12a-14b≥3$ $12b+14a≤-3$ |
$14b-12a≥3$ |
The correct answer is Option (1) → $14b-12a≥3$ Inequality equation, $4x+7y≤-3$ $P(3a,-2b)$ is, $4(3a)+7(-2b)≤-3$ $12a-14b≤-3$ $14b-12a≥3$ |