Let $f: R \rightarrow R$ be a function such that $f\left(\frac{x+y}{3}\right)=\frac{f(x)+f(y)}{3}$ for all $x, y \in R$. f(0) = 0 and f'(0) = 3. Then, f(x) is |
a quadratic function continuous but not differentiable differentiable in R bounded in R |
differentiable in R |
We have, $f\left(\frac{x+y}{3}\right)=\frac{f(x)+f(y)}{3}$ for all $x, y \in R$ $\Rightarrow f\left(\frac{x}{3}\right)=\frac{f(x)+f(0)}{3}$ for all $x \in R$ [Putting y = 0] $\Rightarrow 3 f\left(\frac{x}{3}\right)=f(x)$ for all $x \in R$ [∵ f(0) = 0] Now, $f'(x) =\lim\limits_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ $\Rightarrow f'(x) =\lim\limits_{h \rightarrow 0} \frac{f\left(\frac{3 x+3 h}{3}\right)-f(x)}{h}$ $\Rightarrow f'(x)=\lim\limits_{h \rightarrow 0} \frac{\frac{f(3 x)+f(3 h)}{3}-f(x)}{h}$ $\left[∵ f\left(\frac{x+y}{3}\right) =\frac{f(x)+f(y)}{3}\right]$ $\Rightarrow f'(x)=\lim\limits_{h \rightarrow 0} \frac{f(3 x)+f(3 h)-3 f(x)}{3 h}$ $\Rightarrow f'(x)=\lim\limits_{h \rightarrow 0} \frac{3 f(x)+f(3 h)-3 f(x)}{3 h}$ $\begin{bmatrix} ∵ 3f\left(\frac{x}{3}\right)=f(x) \\ \Rightarrow 3f(x) = f(3x)\end{bmatrix}$ $\Rightarrow f'(x)=\lim\limits_{h \rightarrow 0} \frac{f(3 h)}{3 h}$ $\Rightarrow f'(x)=\lim\limits_{h \rightarrow 0} \frac{f(3 h)-f(0)}{3 h}$ [∵ f(0) = 0] $\Rightarrow f'(x)=f'(0)$ [∵ f'(0) = 3] $f'(x)=3$ $\Rightarrow f(x)=3 x+C$ But, f(0) = 0. Therefore, C = 0 |