A discrete random variable X has the following probability distribution :
The value of $P(X≤2)$ is : |
$\frac{1}{5}$ $\frac{16}{25}$ $\frac{9}{25}$ $\frac{2}{5}$ |
$\frac{9}{25}$ |
The correct answer is Option (3) → $\frac{9}{25}$ The sum of all probabilities must be equal to 1: $P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)=1$ $⇒4c^2+3c^2+2c^2+c^2+c+2c=1$ $c=\frac{-3±7}{20}⇒c=\frac{4}{20}=0.2$ (Probabilities must be positive) $∴P(X≤2)=4c^2+3c^2+2c^2$ $=4(0.2)^2+3(0.2)^2+2(0.2)^2$ $=0.16+0.12+0.08$ $=0.36$ |