The value of $1+\sqrt{\frac{\cot \theta+\cos \theta}{\cot \theta-\cos \theta}}$, if $0^{\circ}<\theta<90^{\circ}$, is equal to: |
$1-\sec \theta+\tan \theta$ $1-\sec \theta-\tan \theta$ $1+\sec \theta-\tan \theta$ $1+\sec \theta+\tan \theta$ |
$1+\sec \theta+\tan \theta$ |
1 + $\sqrt{\frac{cotθ+cosθ}{cotθ-cosθ}}$ =1 + $\sqrt{\frac{1+sinθ}{1-sinθ}} × \sqrt{\frac{1+sinθ}{1+sinθ}}$ = 1 + $\sqrt{\frac{(1+sinθ)2}{12-sin2θ}} $ = 1 + $\sqrt{\frac{(1+sinθ)2}{cos2θ}} $ = 1 + secθ + tanθ |