Target Exam

CUET

Subject

General Test

Chapter

Quantitative Reasoning

Topic

Trigonometry

Question:

The value of $1+\sqrt{\frac{\cot \theta+\cos \theta}{\cot \theta-\cos \theta}}$, if $0^{\circ}<\theta<90^{\circ}$, is equal to:

Options:

$1-\sec \theta+\tan \theta$

$1-\sec \theta-\tan \theta$

$1+\sec \theta-\tan \theta$

$1+\sec \theta+\tan \theta$

Correct Answer:

$1+\sec \theta+\tan \theta$

Explanation:

1 + $\sqrt{\frac{cotθ+cosθ}{cotθ-cosθ}}$

=1 + $\sqrt{\frac{1+sinθ}{1-sinθ}} × \sqrt{\frac{1+sinθ}{1+sinθ}}$

= 1 + $\sqrt{\frac{(1+sinθ)2}{12-sin2θ}} $

= 1 + $\sqrt{\frac{(1+sinθ)2}{cos2θ}} $

= 1 + secθ + tanθ