A and B are two events such that odds against A are 2:1 odds in favour of A ∪ B are 3 : 1. If x ≤ P(B) ≤ y, then the ordered pair (x,y) is |
$(5/12, 3/4)$ $(2/3, 3/4)$ $(1/3, 3/4)$ none of these |
$(5/12, 3/4)$ |
We have, $P(A)=\frac{1}{3} $ and $ P(A ∪ B)=\frac{3}{4}$ $∴ P(A ∪ B) = P(A) + P(B) - P(A ∩ B)$ $⇒ \frac{3}{4}=\frac{1}{3}+P(B) -P(A ∩ B)$ $⇒ \frac{5}{12}=P(B)-P(A ∩ B)$ $⇒ P(B) =\frac{5}{12}+P(A ∩ B) ⇒ P(B) ≥ 5/12$ .....(i) Again, $P(B)=\frac{5}{12} + P(A ∩ B)$ $⇒ P(B) ≤ 5/12 + P(A)$ $[∵P(A∩B) ≤ P(A)]$ $⇒ P(B) ≤ \frac{5}{12}+\frac{1}{3}=\frac{3}{4}$ .......(ii) From (i) and (ii), we obtain $ 5/12 ≤ P(B) ≤ 3/4 $ Hence, $ x = 5/12 $ and $ y = 3/4$ |