$\int \frac{f'(x)}{f(x) \log_e[f(x)]} \, dx$ is equal to |
\( f(x) \cdot \log_e[f(x)] + C \); \( C \) is a constant of integration \( \frac{\log_e[f(x)]}{f(x)} + C \); \( C \) is a constant of integration \( \log_e(\log_e[f(x)]) + C \); \( C \) is a constant of integration \( \frac{\log_e(\log_e[f(x)])}{f(x)} + C \); \( C \) is a constant of integration |
\( \log_e(\log_e[f(x)]) + C \); \( C \) is a constant of integration |
The correct answer is Option (3) → \( \log_e(\log_e[f(x)]) + C \); \( C \) is a constant of integration Given integral: $\int \frac{f'(x)}{f(x) \log_e[f(x)]}\,dx$ Substitute: $u = \log_e[f(x)]$ $\Rightarrow \frac{du}{dx} = \frac{f'(x)}{f(x)}$ $\Rightarrow du = \frac{f'(x)}{f(x)}\,dx$ So the integral becomes: $\int \frac{1}{u}\,du = \log_e|u| + C = \log_e|\log_e[f(x)]| + C$ |