If $y=\frac{\sqrt{x^2-4}}{\cos ^{-1}(2-x)}$, then the domain of y is : |
[–2, 3] [1, 2] [2, 3] [–2, 2] |
[2, 3] |
We know that $x^2- 4 ≥ 0$ and $– 1 ≤ 2 – x < 1$ $x^2- 4 ≥ 0$ $⇒x^2≥4$ $|x|≥2$ $x≥2$ $x≤-2$ $– 1 ≤ 2 – x < 1$ so $1 ≤ x ≤3$ ⇒ intersection of both of them gives $2 ≤ x ≤3⇒x∈[2,3]$ domain |