A network of five capacitors is shown in the figure. The total charge stored in the network connected between A and B is: |
8 μC 10 μC 9 mC 10 mC |
10 μC |
The correct answer is Option (2) → 10 μC Let top node = $v_1$, bottom node = $v_2$, $V_A=3\,$V, $V_B=0\,$V. Node equations: $4(3-v_1)=2(v_1-0)+5(v_1-v_2)$ $6(3-v_2)=3(v_2-0)+5(v_2-v_1)$ Simplify: $-11v_1+5v_2=-12$ $5v_1-14v_2=-18$ Solving gives $v_1=2\,$V and $v_2=2\,$V. Charge drawn from $A$: $Q= C_1(3-v_1)+C_3(3-v_2)=4(1)+6(1)=10\ \mu\text{C}$. Answer: $10\ \mu\text{C}$ |