Which of the following functions satisfies Rolle's theorem? |
$f(x)=x, x \in[1,2]$ $f(x)=x^2, x \in[-1,1]$ $f(x)=x^3, x \in[-1,2]$ $f(x)=x^4, x \in[0,2]$ |
$f(x)=x^2, x \in[-1,1]$ |
for Rolle's theorem $f(a) = f(b)$ for f(x) defined in [a, b] for this case $f(x) = x^2 , x \in [-1, 1]$ as $(-1)^2 = 1^2$ |