If $\int \frac{\sqrt{5+x^{10}}}{x^{16}} d x=a\left(1+\frac{5}{x^{10}}\right)^{3 / 2}+C$, $a=$ |
$-\frac{1}{25}$ $\frac{1}{75}$ $-\frac{1}{75}$ $-\frac{1}{150}$ |
$-\frac{1}{75}$ |
We have, $I =\int \frac{\sqrt{5+x^{10}}}{x^{16}} d x$ $\Rightarrow I =\int \sqrt{\frac{5+x^{10}}{x^{10}}} \times \frac{1}{x^{11}} d x$ $\Rightarrow I =\frac{-1}{50} \int \sqrt{1+\frac{5}{x^{10}}} \times \frac{-50}{x^{11}} d x$ $\Rightarrow I=-\frac{1}{50} \int \sqrt{1+\frac{5}{x^{10}}} d\left(1+\frac{5}{x^{10}}\right)$ $\Rightarrow I=-\frac{1}{50} \times \frac{2}{3}\left(1+\frac{5}{x^{10}}\right)^{3 / 2}+C=-\frac{1}{75}\left(1+\frac{5}{x^{10}}\right)^{3 / 2}+C$ ∴ $a=-\frac{1}{75}$ |