If a random variable X follows Poisson distribution such that $3P(X=2)=2P(X=1)$, then the variance of X is : |
$\frac{4}{3}$ 1 $\frac{2}{3}$ $\frac{1}{3}$ |
$\frac{4}{3}$ |
The correct answer is Option (1) → $\frac{4}{3}$ A Poisson-distributed random variable X is, $P(X=k)=\frac{e^{-λ}λ^k}{k!}$ [λ = Variance] and, $3P(X=2)=2P(X=1)$ $3×\frac{e^{-λ}λ^2}{2!}=2×\frac{e^{-λ}λ^1}{1!}$ $⇒\frac{3λ^2}{2}=2λ$ $⇒λ(3λ-4)=0$ $⇒λ=\frac{4}{3}$ |