The rate of change in area of a triangle having sides 10 cm and 12 cm when the variable angle between them is $\theta= 60°$, is : |
$30 ~cm^2 /$ radian $120 ~cm^2 /$ radian $30 \sqrt{3} ~cm^2 /$ radian $60 \sqrt{3} ~cm^2 /$ radian |
$30 ~cm^2 /$ radian |
x = 10 cm y = 12 cm θ = 60° x, y → constant θ → variable using concept of vectors |Area| = $\frac{xy \sin \theta}{2}$ (magnitude of area) so $\frac{d A}{d \theta}=\frac{x y \cos \theta}{2}=\frac{10 \times 12 \times \cos 60}{2}$ $\Rightarrow \frac{10 \times 12}{2} \times \frac{1}{2}=\frac{30 ~cm^2}{rad}$ |