Which of the following are normal equations to fit a straight line trend $y = a + bx$ by the method of least squares? |
$∑y=a∑x+b∑x^2, ∑xy=a∑x+b∑y^2$ $∑y=na+b∑x,∑xy=a∑x+b∑x^2$ $∑xy=na+b∑x,∑xy=na+b∑x^2$ $∑x=na+b∑y^2,∑y=a∑x+b∑y^2$ |
$∑y=na+b∑x,∑xy=a∑x+b∑x^2$ |
The correct answer is Option (2) → $∑y=na+b∑x,∑xy=a∑x+b∑x^2$ For fitting a straight line $y = a + bx$ using the method of least squares, the normal equations are: $\sum y = na + b \sum x$ $\sum xy = a \sum x + b \sum x^2$ Answer: ∑y = na + b∑x, ∑xy = a∑x + b∑x² |