Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Definite Integration

Question:

If $f(n)=\frac{1}{n}\{(n+1)(n+2)(n+3)...(n+n)\}^{1 / n}$, then $\lim\limits_{n \rightarrow \infty} f(n)$ equals

Options:

$e^{n \rightarrow \infty}$

$1 / e$

$2 / e$

$4 / e$

Correct Answer:

$4 / e$

Explanation:

Let

$A=\lim\limits_{n \rightarrow \infty} \frac{1}{n}[(n+1)(n+2)(n+3) ...(n+n)]^{1 / n} A$

$=\lim\limits_{n \rightarrow \infty}\left[\left(\frac{n+1}{n}\right)\left(\frac{n+2}{n}\right)\left(\frac{n+3}{n}\right) ...\left(\frac{n+n}{n}\right)\right]^{1 / n}$

$\Rightarrow A=\lim\limits_{n \rightarrow \infty}\left[\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)\left(1+\frac{3}{n}\right) ...\left(1+\frac{1}{n}\right)\right]^{1 / n}$

$\Rightarrow \log A=\lim\limits_{n \rightarrow \infty} \frac{1}{n} \sum\limits_{r=1}^n \log \left(1+\frac{r}{n}\right)$

$\Rightarrow \log A=\int\limits_0^1 \log (1+x) d x=[x \log (1+x)]_0^1-\int\limits_0^1 \frac{x}{x+1} d x$

$\Rightarrow \log A=\log 2-\int\limits_0^1\left(1-\frac{1}{x+1}\right) d x$

$\Rightarrow \log A=\log 2-1+\log 2=\log \left(\frac{4}{e}\right) \Rightarrow A=4 / e$