The focal length of a convex lens in air and in a liquid medium are 20 cm and 80 cm, respectively. If the absolute refractive index of lens is 1.5, then the refractive index of liquid is: |
3/2 4/3 8/9 9/8 |
4/3 |
The correct answer is Option (2) → 4/3 Given: Focal length in air: $f_{air}=20\ \text{cm}$ Focal length in liquid: $f_{liq}=80\ \text{cm}$ Refractive index of lens: $\mu_{lens}=1.5$ Lens maker formula (neglecting thickness): $\frac{1}{f} = \left(\frac{\mu_{lens}}{\mu_{medium}} - 1\right)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$ Let $K=\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$ (constant for same lens). In air ($\mu_{medium}=1$): $\frac{1}{f_{air}}=(\mu_{lens}-1)K$ $\frac{1}{20}=(1.5-1)K\ \Rightarrow\ \frac{1}{20}=0.5K$ $K=\frac{1}{10}$ In liquid: $\frac{1}{f_{liq}}=\left(\frac{\mu_{lens}}{\mu_{liq}}-1\right)K$ $\frac{1}{80}=\left(\frac{1.5}{\mu_{liq}}-1\right)\frac{1}{10}$ $\frac{1}{80}=\frac{1.5-\mu_{liq}}{10\mu_{liq}}$ $\frac{1}{80}=\frac{1.5-\mu_{liq}}{10\mu_{liq}}$ Cross multiply: $10\mu_{liq}\cdot\frac{1}{80}=1.5-\mu_{liq}$ $\frac{\mu_{liq}}{8}=1.5-\mu_{liq}$ $\frac{\mu_{liq}}{8}+\mu_{liq}=1.5$ $\frac{9\mu_{liq}}{8}=1.5$ $\mu_{liq}=\frac{1.5\times 8}{9}=\frac{12}{9}=\frac{4}{3}$ Answer: $\mu_{liq}=\frac{4}{3}=1.33$ |