Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Continuity and Differentiability

Question:

Options:

a

b

c

d

Correct Answer:

d

Explanation:

Slope of tangent = $f'(x)$

$=12x(4x^2-1)$

$⇒f'(2)=12×2(4(2)^2-1)$

$=24×15=360$

$\text{Slope of Normal} = \frac{-1}{\text{Slope of tangent}}$

$=\frac{-1}{360}$

To find the equation,

$y-y_1=Slope(x-x_1)$

$⇒y-3=360(x-2)$

$⇒y=360x-717$