The value of k for which the function $f(x)=\left\{\begin{matrix}\frac{x^2+3x-10}{x-2} & x≠2\\k & x=2 \end{matrix}\right.$ is continuous at x=2; is : |
3 7 2 5 |
7 |
The correct answer is Option (2) → 7 at $f(2)=k$ $\underset{x→2}{\lim}\frac{x^2+3x-10}{x-2}$ $x^2+3x-10=x^2+5x-2x-10$ $=x(x+5)-2(x+5)$ $=(x-2)(x+5)$ $⇒\underset{x→2}{\lim}\frac{(x-2)(x+5)}{(x-2)}$ $⇒\underset{x→2}{\lim}(x+5)=7$ so $k=7$ for continuity to exist |