Match List-I with List-II
Choose the correct answer from the options given below: |
(A)-(I), (B)-(II), (C)-(III), (D)-(IV) (A)-(II), (B)-(I), (C)-(III), (D)-(IV) (A)-(III), (B)-(IV), (C)-(II), (D)-(I) (A)-(IV), (B)-(III), (C)-(II), (D)-(I) |
(A)-(IV), (B)-(III), (C)-(II), (D)-(I) |
The correct answer is Option (4) → (A)-(IV), (B)-(III), (C)-(II), (D)-(I)
Given curves and slopes to find at x = 4: (A) $y = \sqrt{x^3} = x^{3/2}$ $\frac{dy}{dx} = \frac{3}{2} x^{1/2}$ At $x = 4$: $\frac{dy}{dx} = \frac{3}{2} \cdot 2 = 3$ → (A)-(IV) (B) $y = \sqrt{x} = x^{1/2}$ $\frac{dy}{dx} = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}}$ At $x = 4$: $\frac{dy}{dx} = \frac{1}{2*2} = 1/4$ → (B)-(III) (C) $y = x^3 - 47x$ $\frac{dy}{dx} = 3x^2 - 47$ At $x = 4$: $\frac{dy}{dx} = 3*16 - 47 = 48 - 47 = 1$ → (C)-(II) (D) $xy = 16 \Rightarrow y = 16/x$ $\frac{dy}{dx} = -16/x^2$ At $x = 4$: $\frac{dy}{dx} = -16/16 = -1$ → (D)-(I) |