Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Indefinite Integration

Question:

Integral $\int e^x\left(1+x^2\right) d x=$

Options:

$e^x\left(\frac{x^3}{3}+x\right)+c$ (c is a constant)

$\left(x^2+2 x\right) e^x+c$ (c is a constant)

$\left(x^2-2 x+3\right) e^x+c$ (c is a constant)

$2 x e^x+c$ (c is a constant)

Correct Answer:

$\left(x^2-2 x+3\right) e^x+c$ (c is a constant)

Explanation:

The correct answer is Option (3) - $\left(x^2-2 x+3\right) e^x+c$ (c is a constant)

$\int e^x\left(1+x^2\right) d x$

$=\int e^xd x+\int x^2e^xdx$

$=e^x+\int x^2e^xdx$

Using DI method

$⇒e^x+x^2e^x-2xe^x+2e^x+C$

$=(x^2-2x+3)e^x+C$