A particle moves along the curve $6x=y^3+2$. The points on the curve at which the $x$ coordinate is changing 8 times as fast as y coordinate are: |
$(11, 4),\left(-\frac{31}{3},4\right)$ $(-11, 4),\left(\frac{31}{3},-4\right)$ $(11, -4),\left(-\frac{31}{3},-4\right)$ $(11, 4),\left(-\frac{31}{3},-4\right)$ |
$(11, 4),\left(-\frac{31}{3},-4\right)$ |
The correct answer is Option (4) → $(11, 4),\left(-\frac{31}{3},-4\right)$ $6x=y^3+2$ [Given Curve] $\frac{d}{dt}(6x)=\frac{d}{dt}(y^3+2)$ $6\frac{dx}{dt}=3y^2\frac{dy}{dt}$ and, $\frac{dx}{dt}=3y^2\frac{dy}{dt}$ [Given] $⇒6\left(8\frac{dy}{dt}\right)=3y^2\left(\frac{dy}{dt}\right)$ $⇒48\frac{dy}{dt}=3y^2\frac{dy}{dt}$ $⇒3y^2=48$ $⇒y=±4$ Substituting $±4$ in the given equation, $6x=(±4)^3+2$ $⇒x=11$ and $x=-\frac{31}{3}$ |