The half life of $U^{238}$ when 1 gram of it emits $1.23 \times 10^4$ alpha particle per second is: (taking 1 year $=3.155 \times 10^7$ second) |
$1.84 \times 10^8$ years $2.413 \times 10^9$ years $4.519 \times 10^9$ years $6.2 \times 10^7$ years |
$4.519 \times 10^9$ years |
The correct answer is Option (3) → $4.519 \times 10^9$ years The activity A of Radioactive sample is given by - $A=λN$ where, A → Activity (particles per second) = $1.23×10^4$ λ → Decay constant N → Number of radioactive present and, $λ=\frac{ln2}{T_{1/2}}$ and, $N=\frac{1\,gram}{238\,grams/mol}×6.022×10^{23}atoms$ $=2.53×10^{21}atoms$ Now, $λ=\frac{A}{N}=\frac{1.23×10^4}{2.53×10^{21}}\sec^{-1}$ $≃4.87×10^{-18}\sec^{-1}$ $∴T_{1/2}=\frac{ln2}{λ}=\frac{0.693}{4.87×10^{-18}}$ $≃1.42×10^{17}$ seconds $≃4.519×10^9$ years |