In a circuit, resistance $R_1$ is connected in series with the parallel combination of resistances $R_2$ and $R_3$. The currents passing through the resistances $R_1, R_2$ and $R_3$ are $I_1, I_2$ and $I_3$, respectively. What will be the ratio ($I_3/I_1$) of currents in terms of the resistances connected in the circuit? |
$(R_2 +R_3)/ R_1$ $R_2/(R_2 +R_3)$ $R_3 / (R_1 +R_2)$ $R_1/(R_2 +R_3)$ |
$R_2/(R_2 +R_3)$ |
The correct answer is Option (2) → $R_2/(R_2 +R_3)$ Equivalent resistance of parallel part: $R_{23} = \frac{R_2 R_3}{R_2 + R_3}$ Total resistance of circuit: $R_{eq} = R_1 + R_{23}$ Current through $R_1$: $I_1 = \frac{V}{R_{eq}}$ Voltage across parallel branch: $V_{23} = I_1 R_{23}$ Current through $R_3$: $I_3 = \frac{V_{23}}{R_3} = \frac{I_1 R_{23}}{R_3}$ Therefore ratio: $\frac{I_3}{I_1} = \frac{R_{23}}{R_3}$ $\frac{I_3}{I_1} = \frac{\frac{R_2 R_3}{R_2+R_3}}{R_3} = \frac{R_2}{R_2+R_3}$ Hence, $\frac{I_3}{I_1} = \frac{R_2}{R_2 + R_3}$ |