A sinusoidal voltage with peak value 220 V and variable frequency is applied to a series LCR circuit in which R = 10Ω, L = 4 mH, and C = 100 mF. Consider the following: (A) Resonant angular frequency $(ω_0) = 50\, rad/s$ Choose the correct answer from the options given below: |
(A) and (C) only (A), (B) and (D) only (A), (C) and (D) only (B) and (D) only |
(A), (B) and (D) only |
The correct answer is Option (2) → (A), (B) and (D) only Given: $R = 10\ \Omega,\ L = 4\ \text{mH} = 4\times 10^{-3}\ H,\ C = 100\ \text{mF} = 0.1\ F,\ V_0 = 220\ V$ (peak) Resonant angular frequency: $\omega_0 = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{(4\times10^{-3})(0.1)}} = \frac{1}{\sqrt{4\times10^{-4}}} = \frac{1}{0.02} = 50\ \text{rad/s}$ Resonant frequency: $v_0 = \frac{\omega_0}{2\pi} = \frac{50}{2\pi} = \frac{25}{\pi}\ \text{Hz}$ At resonance, impedance $Z = R$, so rms current: $I_{\text{rms}} = \frac{V_{\text{rms}}}{R} = \frac{V_0/\sqrt{2}}{R} = \frac{220/\sqrt{2}}{10} \approx 15.56\ \text{A}$ |