The minimum value of $f(x) = 4x^3 - 48 x + 105 $ in the interval [1, 3] is : |
61 41 32 69 |
41 |
The correct answer is Option (2) → 41 Given, $f(x)=4x^3-48x+105$ $⇒f'(x)=12x^2-48$ Now, for critical points, $12x^2-48=0$ $x^2-4=0$ $x=±2$ Since the interval is [1, 3], we consider x = 2, as it lies within the interval. $f(1)=4(1)^3-48(1)+105=4-48+105=61$ $f(2)=4(2)^3-48(2)+105=32-96+105=41$ $f(3)=4(3)^3-48(3)+105=108-144+105=69$ ∴ Minimum value is 41. |