If $A=\begin{bmatrix}-2\\-1\\-4\end{bmatrix}, B = \begin{bmatrix}-1&2&3\end{bmatrix}$, then the value of $A' B'$ is |
$\begin{bmatrix}2&-4&-6\\1&-2&-3\\4&-8&-12\end{bmatrix}$ $\begin{bmatrix}2&1&4\\-4&-2&-8\\-6&-3&-12\end{bmatrix}$ $\begin{bmatrix}12\end{bmatrix}$ $\begin{bmatrix}-12\end{bmatrix}$ |
$\begin{bmatrix}-12\end{bmatrix}$ |
The correct answer is Option (4) → $\begin{bmatrix}-12\end{bmatrix}$ Given: $A = \begin{bmatrix} -2 \\ -1 \\ -4 \end{bmatrix}$, $B = \begin{bmatrix} -1 & 2 & 3 \end{bmatrix}$
$A' = \text{transpose of } A = \begin{bmatrix} -2 & -1 & -4 \end{bmatrix}$ Then: $A'B' = \begin{bmatrix} -2 & -1 & -4 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}$ $=[ (-2)(-1) + (-1)(2) + (-4)(3) ]= [2 - 2 - 12] = [-12]$ |