The integral $\int e^x\left(\log x+\frac{1}{x^2}\right) d x$ equals for some arbitrary constant k |
$e^x\left(\log x+\frac{1}{x^2}\right)+k$ $e^x\left(\log x-\frac{1}{x}\right)+k$ $e^x\left(\log x-\frac{1}{x^2}\right)+k$ $e^x\left(\log x+\frac{1}{x}\right)+k$ |
$e^x\left(\log x-\frac{1}{x}\right)+k$ |
The correct answer is Option (2) → $e^x\left(\log x-\frac{1}{x}\right)+k$ $\int e^x\left(\log x+\frac{1}{x^2}\right) d x$ $=\int e^x\left(\underset{f(x)}{\underbrace{\log x}}+\underset{f'(x)}{\underbrace{\frac{1}{x}}}\right) d x+\int e^x\left(\underset{g(x)}{\underbrace{-\frac{1}{x}}}+\underset{g'(x)}{\underbrace{\frac{1}{x^2}}}\right)dx$ $=e^x\left(\log x-\frac{e^x}{x}\right)+k$ |