A Fraunhofer diffraction pattern due to a single slit of width 0.2 mm is being obtained on a screen placed at a distance of 2 m from the slit. The first minimum lies at 5 mm on either side of the central maximum on the screen. The wavelength of light is: |
4700 Å 5000 Å 6000 Å 6800 Å |
5000 Å |
The correct answer is Option (2) → 5000 Å Given: Slit width $a = 0.2 \, mm = 2 \times 10^{-4} \, m$ Screen distance $D = 2 \, m$ First minimum position $y = 5 \, mm = 5 \times 10^{-3} \, m$ Condition for first minimum: $a \sin \theta = \lambda$ For small angle, $\sin \theta \approx \tan \theta = \frac{y}{D}$ $\lambda = a \cdot \frac{y}{D}$ Substitute values: $\lambda = (2 \times 10^{-4}) \cdot \frac{5 \times 10^{-3}}{2}$ $\lambda = (2 \times 10^{-4}) \cdot (2.5 \times 10^{-3})$ $\lambda = 5 \times 10^{-7} \, m$ Final Answer: $\lambda = 500 \, nm$ |