Which of the following statements are correct? (A) If $\vec a$ and $\vec b$ represent the adjacent sides of a triangle, then its area is $\frac{1}{2}|\vec a×\vec b|$ Choose the correct answer from the options given below: |
(B), (C) and (D) only (C) and (D) only (A), (B) and (D) only (A) and (D) only |
(A), (B) and (D) only |
The correct answer is Option (3) → (A), (B) and (D) only (A) If $\vec{a}$ and $\vec{b}$ are adjacent sides of a triangle, then area = $\frac{1}{2}|\vec{a} \times \vec{b}|$ ✔️ Correct. This is the standard formula for the area of a triangle formed by two vectors. (B) If $\vec{a}$ and $\vec{b}$ are adjacent sides of a parallelogram, then area = $|\vec{a} \times \vec{b}|$ ✔️ Correct. The cross product magnitude gives the area of the parallelogram. (C) $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\cos\theta$ ❌ Incorrect. The correct identity is $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\theta$ (D) If $\vec{a}$ and $\vec{b}$ are diagonals of a parallelogram, then area = $\frac{1}{2}|\vec{a} \times \vec{b}|$ ✔️ Correct. This is a standard formula for area of parallelogram when the diagonal vectors are given. Correct options: (A), (B), (D) |