Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Vectors

Question:

Which of the following statements are correct?

(A) If $\vec a$ and $\vec b$ represent the adjacent sides of a triangle, then its area is $\frac{1}{2}|\vec a×\vec b|$
(B) If $\vec a$ and $\vec b$ represent the adjacent sides of a parallelogram, then its area is $|\vec a×\vec b|$
(C) $|\vec a×\vec b|=|\vec a||\vec b|\cos θ$
(D) If $\vec a$ and $\vec b$ represent the 'diagonals' of a parallelogram, then its area is is $\frac{1}{2}|\vec a×\vec b|$

Choose the correct answer from the options given below:

Options:

(B), (C) and (D) only

(C) and (D) only

(A), (B) and (D) only

(A) and (D) only

Correct Answer:

(A), (B) and (D) only

Explanation:

The correct answer is Option (3) → (A), (B) and (D) only

(A) If $\vec{a}$ and $\vec{b}$ are adjacent sides of a triangle, then area = $\frac{1}{2}|\vec{a} \times \vec{b}|$

✔️ Correct. This is the standard formula for the area of a triangle formed by two vectors.

(B) If $\vec{a}$ and $\vec{b}$ are adjacent sides of a parallelogram, then area = $|\vec{a} \times \vec{b}|$

✔️ Correct. The cross product magnitude gives the area of the parallelogram.

(C) $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\cos\theta$

❌ Incorrect. The correct identity is $|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\theta$

(D) If $\vec{a}$ and $\vec{b}$ are diagonals of a parallelogram, then area = $\frac{1}{2}|\vec{a} \times \vec{b}|$

✔️ Correct. This is a standard formula for area of parallelogram when the diagonal vectors are given.

Correct options: (A), (B), (D)