Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Inverse Trigonometric Functions

Question:

If -1 < x < 0, then $sin \begin{Bmatrix}tan^{-1}\frac{1-x^2}{2x} -cos^{-1} \frac{1-x^2}{1+x^2}\end{Bmatrix}$ is equal to

Options:

1

-1

0

none of these

Correct Answer:

-1

Explanation:

We know that $tan^{-1}x = - \pi +cot^{-1}(\frac{1}{x})$ if x < 0

$∴sin \begin{Bmatrix}tan^{-1}\frac{1-x^2}{2x} -cos^{-1} \frac{1-x^2}{1+x^2}\end{Bmatrix}$

$=sin \begin{Bmatrix}-\pi +cot^{-1}\frac{2x}{1-x^2}-cos^{-1}\frac{1-x^2}{1+x^2}\end{Bmatrix}$

$=sin \begin{Bmatrix}-\pi +\frac{\pi}{2}-tan^{-1}\frac{2x}{1-x^2}-cos^{-1}\frac{1-x^2}{1+x^2}\end{Bmatrix}$

$=sin \begin{Bmatrix} -\frac{\pi}{2}-2tan^{-1}x + 2 tan^{-1}x \end{Bmatrix}$  $\left[∵cos^{-1}\frac{1-x^2}{1+x^2}= - 2tan^{-1}x, \, \, if \,\, x < 0 \right]$

$= sin \left(-\frac{\pi}{2}\right) = - 1 $