If $f(x) = a\log_e|x| + bx^2+x$ has critical points at $x = -2$ and $x = 1$, then |
$a +2b=0$ $a- 2b=0$ $a + 4b = 0$ $a- 4b = 0$ |
$a + 4b = 0$ |
The correct answer is Option (3) → $a + 4b = 0$ Given: The function is $f(x) = a \log_e |x| + b x^2 + x$ Critical points: Occur where $f'(x) = 0$. Given critical points at $x = -2$ and $x = 1$. Step 1: Differentiate $f'(x) = \frac{a}{x} + 2bx + 1$ Step 2: Use the given critical points At $x = -2$: $\frac{a}{-2} + 2b(-2) + 1 = 0$ $\Rightarrow -\frac{a}{2} - 4b + 1 = 0$ ...(1) At $x = 1$: $\frac{a}{1} + 2b(1) + 1 = 0$ $\Rightarrow a + 2b + 1 = 0$ ...(2) Step 3: Solve equations (1) and (2) From (1): $- \frac{a}{2} - 4b + 1 = 0$ $\Rightarrow -a - 8b + 2 = 0$ (Multiplying by 2) $\Rightarrow -a - 8b = -2$ ...(3) Equation (2): $a + 2b = -1$ ...(4) Add (3) and (4): $(-a - 8b) + (a + 2b) = -2 -1$ $-6b = -3 \Rightarrow b = \frac{1}{2}$ Substitute $b = \frac{1}{2}$ into (4): $a + 2\cdot \frac{1}{2} = -1 \Rightarrow a + 1 = -1 \Rightarrow a = -2$ Final Answer: $a = -2$, $b = \frac{1}{2}$ |