Match List – I with List – II.
Choose the correct answer from the options given below: |
A-II, B-IV, C-I, D-III A-III, B-I, C-IV, D-II A-I, B-II, C-III, D-IV A-IV, B-III, C-II, D-I |
A-II, B-IV, C-I, D-III |
The correct answer is Option (1) → A-II, B-IV, C-I, D-III (A) $4 \sin ^{-1} x+\cos ^{-1} x=\pi$ $⇒4\sin ^{-1} x+\left(\frac{π}{2}-\sin ^{-1} x\right)=\pi$ $⇒3\sin ^{-1} x=\frac{π}{2}$ $⇒\sin ^{-1} x=\frac{π}{6}$ $⇒x=\sin\left(\frac{π}{6}\right)=\frac{1}{2}$ (II) (B) $\frac{1-\tan ^2 15°}{1+\tan ^2 15°}=\tan(45°-15°)=\tan 30°$ $⇒\tan 30°=\frac{\sqrt{3}}{2}$ (IV) (C) $x+\frac{1}{x}=2$ $⇒x^2-2x+1=0$ $⇒(x-1)^2=0$ $⇒x=1$ $∴\sin^{-1}(1)=\frac{\pi}{2}$ (I) (D) $θ_3=\pi-(θ_1+θ_2)$ $=\pi-(\cot^{-1}2+\cot^{-1}3)$ $=\pi-\left(\tan^{-1}\frac{1}{2}+\tan^{-1}\frac{1}{3}\right)=\pi=\tan^{-1}\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}×\frac{1}{3}}\right)$ $=\pi-\tan^{-1}1=\pi-\frac{\pi}{4}=\frac{3\pi}{4}$ (III) |