Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Inverse Trigonometric Functions

Question:

$\sin^{-1}\left(\cos\frac{3\pi}{5}\right)$ equals

Options:

$\frac{3\pi}{5}$

$\frac{-\pi}{10}$

$\frac{\pi}{10}$

$\frac{-3\pi}{10}$

Correct Answer:

$\frac{-\pi}{10}$

Explanation:

The correct answer is Option (2) → $\frac{-\pi}{10}$

$\cos\frac{3\pi}{5} = \cos(\pi - \frac{2\pi}{5}) = -\cos\frac{2\pi}{5}$

$\sin^{-1}(\cos\frac{3\pi}{5}) = \sin^{-1}(-\cos\frac{2\pi}{5}) = -\sin^{-1}(\cos\frac{2\pi}{5})$

$\cos\frac{2\pi}{5} = \sin\frac{\pi}{2} - \frac{2\pi}{5} = \sin(\frac{\pi}{10})$

$\sin^{-1}(\cos\frac{3\pi}{5}) = -\sin^{-1}(\sin\frac{\pi}{10})$

$= -\frac{\pi}{10}$