$\sin^{-1}\left(\cos\frac{3\pi}{5}\right)$ equals |
$\frac{3\pi}{5}$ $\frac{-\pi}{10}$ $\frac{\pi}{10}$ $\frac{-3\pi}{10}$ |
$\frac{-\pi}{10}$ |
The correct answer is Option (2) → $\frac{-\pi}{10}$ $\cos\frac{3\pi}{5} = \cos(\pi - \frac{2\pi}{5}) = -\cos\frac{2\pi}{5}$ $\sin^{-1}(\cos\frac{3\pi}{5}) = \sin^{-1}(-\cos\frac{2\pi}{5}) = -\sin^{-1}(\cos\frac{2\pi}{5})$ $\cos\frac{2\pi}{5} = \sin\frac{\pi}{2} - \frac{2\pi}{5} = \sin(\frac{\pi}{10})$ $\sin^{-1}(\cos\frac{3\pi}{5}) = -\sin^{-1}(\sin\frac{\pi}{10})$ $= -\frac{\pi}{10}$ |