Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Probability

Question:

The value of the integral $\int\limits_2^4 \frac{x}{x^2+1} dx$ is:

Options:

$\frac{1}{2} \log \left(\frac{5}{17}\right)$

$\frac{1}{2} \log \left(\frac{17}{5}\right)$

$2 \log \left(\frac{5}{17}\right)$

$2 \log \left(\frac{17}{5}\right)$

Correct Answer:

$\frac{1}{2} \log \left(\frac{17}{5}\right)$

Explanation:

The correct answer is Option (2) - $\frac{1}{2} \log \left(\frac{17}{5}\right)$

$I=\frac{1}{2}\int\limits_2^4 \frac{2x}{x^2+1} dx$

$I=\frac{1}{2}\left[\log|x^2+1|\right]_2^4=\frac{1}{2}\log|\frac{17}{5}|$