The value of the integral $\int\limits_2^4 \frac{x}{x^2+1} dx$ is: |
$\frac{1}{2} \log \left(\frac{5}{17}\right)$ $\frac{1}{2} \log \left(\frac{17}{5}\right)$ $2 \log \left(\frac{5}{17}\right)$ $2 \log \left(\frac{17}{5}\right)$ |
$\frac{1}{2} \log \left(\frac{17}{5}\right)$ |
The correct answer is Option (2) - $\frac{1}{2} \log \left(\frac{17}{5}\right)$ $I=\frac{1}{2}\int\limits_2^4 \frac{2x}{x^2+1} dx$ $I=\frac{1}{2}\left[\log|x^2+1|\right]_2^4=\frac{1}{2}\log|\frac{17}{5}|$ |