A 25 cm long solenoid with 100 turns carries a current of 3 A. The flux density at the center of the solenoid is |
$3.2 × 10^{-2}\, Wb/m^2$ $4.8 × 10^{-3}\, Wb/m^2$ $1.51 × 10^{-3}\, Wb/m^2$ $6.61 × 10^{-2}\, Wb/m^2$ |
$1.51 × 10^{-3}\, Wb/m^2$ |
The correct answer is Option (3) → $1.51 × 10^{-3}\, Wb/m^2$ Given: Length of solenoid: $l = 25 \, \text{cm} = 0.25 \, \text{m}$ Number of turns: $N = 100$ Current: $I = 3 \, \text{A}$ Magnetic field inside a long solenoid: $B = \mu_0 \frac{N}{l} I$ Substitute values: $\mu_0 = 4 \pi \times 10^{-7} \, \text{T·m/A}$ $B = 4 \pi \times 10^{-7} \cdot \frac{100}{0.25} \cdot 3$ $\frac{100}{0.25} = 400$ $B = 4 \pi \times 10^{-7} \cdot 400 \cdot 3 = 4 \pi \times 10^{-7} \cdot 1200 = 4800 \pi \times 10^{-7}$ $B = 4.8 \pi \times 10^{-4} \, \text{T} \approx 1.507 \times 10^{-3} \, \text{T}$ Answer: $B \approx 1.51 \times 10^{-3} \, \text{T}$ |