If $5 f(x)+3 f\left(\frac{1}{x}\right)=x+2$ and $y=x f(x)$, then $\frac{d y}{d x}$ at x = 1 is equal to |
14 $\frac{7}{8}$ 1 none of these |
$\frac{7}{8}$ |
We have, $5 f(x)+3 f\left(\frac{1}{x}\right)=x+2$ for all $x \neq 0$ ......(i) Replacing x by $\frac{1}{x}$, we get $5 f\left(\frac{1}{x}\right)+3 f(x)=\frac{1}{x}+2$ ......(ii) Eliminating $f\left(\frac{1}{x}\right)$ between (i) and (ii), we get $16 f(x)=5 x-\frac{3}{x}+4$ $\Rightarrow f(x)=\frac{5}{16} x-\frac{3}{16 x}+\frac{1}{4} \Rightarrow f'(x)=\frac{5}{16}+\frac{3}{16 x^2}$ Now, $y=x f(x)$ $\Rightarrow \frac{d y}{d x}=f(x)+x f'(x)$ $\Rightarrow \left(\frac{d y}{d x}\right)_{x=1}=f(1)+f'(1)=\frac{5}{16}-\frac{3}{16}+\frac{1}{4}+\frac{5}{16}+\frac{3}{16}=\frac{7}{8}$ |