If a random variable X follows Binomial distribution with mean 8 and variance 4, then P(X> 1) is : |
$\frac{1}{65536}$ $\frac{1}{65535}$ $\frac{65535}{65536}$ $\frac{655}{65536}$ |
$\frac{65535}{65536}$ |
The correct answer is Option (3) → $\frac{65535}{65536}$ The Binomial probability mass function $P(X=x)={^nC}_xp^x(1-p)^{n-x}$ $P(X≤x)=P(X=0)+P(X=1)$ $=(0.05)^{16}+16(0.5)^{16}=17(0.5)^{16}$ $∴P(X>1)=1-17(0.5)^{16}=\frac{65535}{65536}$ |