Let R be the relation over the set A of all straight lines in a plane such that $l_1 R ~l_2 \Leftrightarrow l_1$ is parallel to $l_2$. Then R is: |
Symmetric An Equivalence relation Transitive Reflexive |
An Equivalence relation |
The correct answer is Option (2) → An Equivalence relation Let P denote → Universal set of planes for each $l∈P$ $l||l$ so $(l,l)∈R$ (Reflexive) $(l_1,l_2)∈R$ $⇒l_1||l_2⇒(l_2,l_1)∈R$ (Symmetric) $(l_1,l_2)∈R,(l_2,l_3)∈R$ $l_1||l_2,l_2||l_3$ $⇒l_1||l_3⇒(l_1,l_3)∈R$ (Transitive) ⇒ Equivalence relation |