Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Determinants

Question:

Let \(A=\left[\begin{array}{lll}\left(b+c\right)^2 & a^2 & a^2 \\ b^2 & \left(c+a\right)^2 & b^2\\ c^2 & c^2 & (a+b)^2\end{array}\right]\) where \(a,b\) and \(c\) are real numbers then determinant of \(A\) is

Options:

\(2ab\left(a+b+c\right)^2\)

\(2abc\left(a+b+c\right)^3\)

\(abc\left(a+b+c\right)^2\)

\(3abc\left(a+b+c\right)^2\)

Correct Answer:

\(2abc\left(a+b+c\right)^3\)

Explanation:

\(A=\left[\begin{array}{lll}(b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2\\ c^2 & c^2 & (a+b)^2\end{array}\right]\)

$C_2→C_2-C_1$

$|A|=\left[\begin{array}{lll}(b+c)^2 & 0 & a^2 \\ b^2 & a^2-b^2+c^2+2ac & b^2\\ c^2 & c^2-a^2-b^2-2ab & (a+b)^2\end{array}\right]$

$|A|=(b+c)^2\left((a^2-b^2+c^2+2ac)(a+b)^2+(c^2-a^2-b^2-2ab)(b^2)\right)$

$=(b+c)^2\left((a+c)^2(a+b)^2-b^2(a+b)^2-c^2b^2+b^2(a-b)^2\right)$

$=(b+c)^2\left((a+c)^2(a+b)^2-c^2b^2-b^2((a+b)^2-(a-b)^2)\right)$

$=2abc(a+b+c)^3$