Let \(A=\left[\begin{array}{lll}\left(b+c\right)^2 & a^2 & a^2 \\ b^2 & \left(c+a\right)^2 & b^2\\ c^2 & c^2 & (a+b)^2\end{array}\right]\) where \(a,b\) and \(c\) are real numbers then determinant of \(A\) is |
\(2ab\left(a+b+c\right)^2\) \(2abc\left(a+b+c\right)^3\) \(abc\left(a+b+c\right)^2\) \(3abc\left(a+b+c\right)^2\) |
\(2abc\left(a+b+c\right)^3\) |
\(A=\left[\begin{array}{lll}(b+c)^2 & a^2 & a^2 \\ b^2 & (c+a)^2 & b^2\\ c^2 & c^2 & (a+b)^2\end{array}\right]\) $C_2→C_2-C_1$ $|A|=\left[\begin{array}{lll}(b+c)^2 & 0 & a^2 \\ b^2 & a^2-b^2+c^2+2ac & b^2\\ c^2 & c^2-a^2-b^2-2ab & (a+b)^2\end{array}\right]$ $|A|=(b+c)^2\left((a^2-b^2+c^2+2ac)(a+b)^2+(c^2-a^2-b^2-2ab)(b^2)\right)$ $=(b+c)^2\left((a+c)^2(a+b)^2-b^2(a+b)^2-c^2b^2+b^2(a-b)^2\right)$ $=(b+c)^2\left((a+c)^2(a+b)^2-c^2b^2-b^2((a+b)^2-(a-b)^2)\right)$ $=2abc(a+b+c)^3$ |