If Rm is the radius of moon orbit round the earth, am the acceleration of moon towards the centre of earth, and Re the radius of earth. Then am is equal to (if g is acceleration due to gravity on the surface of earth) |
$\left(\frac{R_e}{R_m}\right) g$ $\left(\frac{R_m}{R_e}\right) g$ $\left(\frac{R_m}{R_e}\right)^2 g$ $\left(\frac{R_e}{R_m}\right)^2 g$ |
$\left(\frac{R_e}{R_m}\right)^2 g$ |
$\mathrm{g}=\frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}^2}$ ..........(1) $\mathrm{a}_{\mathrm{m}}=\frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{m}}^2}$ ..........(2) $\frac{(2)}{(1)}, \frac{a_m}{g}=\frac{\frac{\mathrm{GM}_e}{\mathrm{R}_{\mathrm{m}}^{\mathrm{e}}}}{\frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}^2}}=\frac{\mathrm{R}_{\mathrm{e}}^2}{\mathrm{R}_{\mathrm{m}}^2} ; \mathrm{a}_{\mathrm{m}}=\left(\frac{\mathrm{R}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{m}}}\right)^2 \mathrm{~g} \mathrm{f}$ |