Practicing Success

Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Definite Integration

Question:

Let $f:(0, \infty) \in R$ be given $f(x)=\int\limits_{1 / x}^x e^{-\left(t+\frac{1}{t}\right)} \frac{1}{t} d t$, then

(a) $f(x)$ is monotonically increasing on $[1, \infty)$
(b) $f(x)$ is monotonically decreasing on $(0,1)$
(c) $f(x)+f\left(\frac{1}{x}\right)=0$ for all $x \in(0, \infty)$
(d) $f\left(2^x\right)$ is an odd function of $x$ on $R$

Options:

(a), (b), (c)

(a), (b), (d)

(a), (c), (d)

(b), (c), (d)

Correct Answer:

(a), (c), (d)

Explanation:

We have,

$f(x) =\int\limits_{1 / x}^x e^{-\left(t+\frac{1}{t}\right)} \frac{1}{t} d t$

$\Rightarrow f'(x) =\frac{1}{x} e^{-\left(x+\frac{1}{x}\right)}+\frac{x}{x^2} e^{-\left(x+\frac{1}{x}\right)}$

$\Rightarrow f'(x)=\frac{2}{x} e^{-\left(x+\frac{1}{x}\right)}>0$ for all $x \in[1, \infty)$

∴  $f(x)$ is monotonically increasing on $[1, \infty)$.

So, option (a) is correct.

Again, $f(x)=\int\limits_{1 / x}^x e^{-\left(t+\frac{1}{t}\right)} \frac{d t}{t}$

$\Rightarrow f\left(\frac{1}{x}\right)=\int\limits_x^{1 / x} e^{-\left(t+\frac{1}{t}\right)} \frac{d t}{t}$

$\Rightarrow f\left(\frac{1}{x}\right)=\int\limits_{1 / u}^u u e^{-\left(\frac{1}{u}+u\right)}\left(\frac{-1}{u^2}\right) d u$, where $t=\frac{1}{u}$

$\Rightarrow f\left(\frac{1}{x}\right)=-\int\limits_{1 / u}^u e^{-\left(u+\frac{1}{u}\right)} \frac{1}{u} d u=-\int\limits_{1 / x}^x e^{-\left(t+\frac{1}{t}\right)} \frac{1}{t} d t=-f(x)$

∴  $f(x)+f\left(\frac{1}{x}\right)=0$. So, option (c) is correct.

Finally, $f(x)=\int\limits_{1 / x}^x e^{-\left(t+\frac{1}{t}\right)} \frac{1}{t} d t$

$\Rightarrow g(x)=f\left(2^x\right)=\int\limits_{2^{-x}}^{2^x} e^{-\left(t+\frac{1}{t}\right)} \frac{1}{t} d t$

$\Rightarrow g(-x)=\int\limits_{2^x}^{2^{-x}} e^{-\left(t+\frac{1}{t}\right)} \frac{1}{t} d t=-\int\limits_{2^{-x}}^{2^x} e^{-\left(u+\frac{1}{u}\right)} \frac{1}{u} d u=-g(x)$

∴  $g(x)=f\left(2^x\right)$ is an odd function of $x$ on $R$.

So, option (d) is correct.