If $m+\frac{1}{m-2}=4$, then find the value of $(m-2)^2+\frac{1}{(m-2)^2}$. |
-2 4 0 2 |
2 |
If $m+\frac{1}{m-2}=4$ Subtract -2 on both the sides If $m - 2 +\frac{1}{m-2}=4 - 2$ If $m - 2 +\frac{1}{m-2}=2$ Then the value of $(m-2)^2+\frac{1}{(m-2)^2}$ = 22 - 2 = 2 |